Brain cell types are affected differently by Rett Syndrome mutation

New research from Jaenisch Lab postdoc Danielle Tomasello focuses on an understudied question: how Rett Syndrome affects cell types in the human brain other than neurons.

Greta Friar | Whitehead Institute
September 6, 2024

Rett Syndrome is a X-chromosome-linked neurodevelopmental disorder; it can lead to loss of coordination, mobility, ability to speak, and use of the hands, among other symptoms. The syndrome is typically caused by mutations within the gene MECP2. Researchers in Whitehead Institute Founding Member Rudolf Jaenisch’s lab have studied Rett Syndrome for many years in order to understand the biological mechanisms that cause disease symptoms, and to identify possible avenues for treatments or a cure. Jaenisch and colleagues have gained many insights into the biology of Rett syndrome and developed tools that can rescue neurons from Rett syndrome symptoms in lab models.

However, much about the biology of Rett Syndrome remains unknown. New research from Jaenisch and postdoc in his lab Danielle Tomasello focuses on an understudied question: how Rett Syndrome affects cell types in the human brain other than neurons. Specifically, Tomasello investigated the effects of Rett Syndrome on astrocytes, a type of brain cell that supports and provides energy for neurons. The work, shared in the journal Scientific Reports on September 6, details changes that occur in Rett syndrome astrocytes, in particular in relation to their mitochondria, and shows how these changes directly impact neurons. The findings provide a new framework for thinking about Rett Syndrome and possible new avenues for therapies.

“By considering Rett Syndrome from a different perspective, this project expands our understanding of a multifaceted and thus far incurable disease,” says Jaenisch, who is also a professor of biology at the Massachusetts Institute of Technology.

Energy metabolism in Rett Syndrome

Mitochondria are organelles that generate energy, which cells use to carry out their functions, and mitochondrial dysfunction was known to occur in Rett Syndrome. Jaenisch and Tomasello found that mitochondria in astrocytes are particularly affected, even more so than mitochondria in neurons. Tomasello grew human stem-cell-derived astrocytes in 2D cultures and also grew 3D organoids: mini brain-like tissues that contain multiple cell types growing in a structure that resembles actual brain anatomy. This approach allowed Tomasello to use human cells, rather than an animal model, and to study how cells behave within a brain-like environment.

When the researchers observed Rett astrocytes grown in these conditions, they found that the mitochondria were misshapen: short, small circles instead of large, long ovals. Additional studies showed evidence of the mitochondria experiencing stress and not being able to generate enough energy through their usual processes. The mitochondria did not have enough of the typical proteins they use to make energy, and so began to break down the cell’s supply of the building blocks of proteins, amino acids, for parts to make up for the missing material. Additionally, the researchers observed an increase in reactive oxygen species, byproducts of mitochondrial metabolism that are toxic to the cell.

Further experiments suggested that the cells try to compensate for this mitochondrial stress by increasing transcription of mitochondrial genes. For example, Tomasello found that regions of DNA called promoters that can increase expression of key mitochondrial genes were more open for the cell to use in Rett astrocytes. Altogether, these findings paint a picture of severe mitochondrial dysfunction in Rett astrocytes.

Although mitochondria in Rett neurons did not have such severe defects, astrocytes and neurons have a close relationship. Not only do neurons rely on astrocytes to supply them with energy, they even accept mitochondria from astrocytes to use for themselves. Jaenisch and Tomasello found that neurons take up dysfunctional mitochondria from Rett astrocytes at a higher rate than they take up mitochondria from unaffected astrocytes. This means that the effects of Rett syndrome on astrocytes have a direct effect on neurons: the dysfunctional mitochondria from the astrocytes end up in the neurons, where they cause damage. Tomasello took mitochondria from Rett astrocytes and placed them on both healthy and Rett neurons. In either case, the neurons took up the dysfunctional mitochondria in large numbers and then experienced significant problems. The neurons entered a hyperexcitable state that is ultimately toxic to the brain. The neurons also contained higher levels of reactive oxygen species, the toxic byproducts of mitochondrial metabolism, which can cause widespread damage. These effects occurred even in otherwise healthy neurons that did not themselves contain a Rett-causing MECP2 mutation.

“This shows that in order to understand Rett Syndrome, we need to look beyond what’s happening in neurons to other cell types,” Tomasello says.

Learning about the role that astrocytes play in Rett Syndrome could provide new avenues for therapies. The researchers found that supplying affected astrocytes with healthy mitochondria helped them to recover normal mitochondrial function. This suggests to Tomasello that one possibility for future Rett Syndrome therapies could be something that either targets mitochondria, or supplies additional mitochondria through the bloodstream.

Together, these insights and their possible medical implications demonstrate the importance of taking a broader look at the foundational biology underlying a disease.

Whitehead Institute researchers uncover a new clue toward understanding the molecular basis of Parkinson’s disease

In Parkinson's disease, a mutation that causes protein misfolding can also turn the brain’s immune cells from friends to foes, possibly accelerating the progression of the disease. New Research from the Jaenisch Lab aims to uncover mechanisms that go awry in the brain, which may inform the development of new therapies that can halt or even reverse the progression of neurological conditions such as Parkinson's.

Shafaq Zia | Whitehead Institute
August 29, 2024

Dopamine is more than the “rush molecule”. This chemical messenger, produced by neurons in the midbrain, acts as a traffic controller that regulates the flow of electrical signals between neurons, assisting with brain functions like cognition, attention, movement, and behavior. But, in instances of Parkinson’s disease (PD), a progressive brain disorder, dopamine-producing neurons begin to die at an unprecedented rate, leading to dwindling levels of this vital chemical and impaired neural communication.

The lab of Whitehead Institute’s Founding Member Rudolf Jaenisch studies genetic and epigenetic factors — changes in gene expression that control which genes are turned on and off, and to what extent, without altering the DNA sequence itself — underlying neurological disorders like PD, Alzheimer’s disease, and Rett Syndrome. Their work aims to uncover the mechanisms that go awry in the brain, which may inform the development of new therapies that can halt or even reverse the progression of these conditions.

In their latest work, Jaenisch and former postdoctoral associate Marine Krzisch examine how a mutation in the gene that encodes for alpha-synuclein, a protein regulating the release of dopamine, affects the resident immune cells of the brain called microglia. The researchers’ detailed findings, published in the journal Biological Psychiatry on August 29, reveal that the mutation renders microglia extremely sensitive, worsening the problem of inflammation in the brain and potentially exacerbating damage to neurons in Parkinson’s disease.

“In fact, even when these mutant microglia are transplanted into a healthy, young brain, they have heightened activation upon stimulation, and low levels of the protective antioxidant catalase,” Krzisch says. “This tells us that in Familial Parkinson’s disease, which is due to genetic mutations, these microglia may be playing an important role in neuron degeneration.”

When nature’s origami falters

The human body is home to tens of thousands of unique proteins, each essential for processes sustaining life. These proteins are composed of linear chains of smaller building blocks called amino acids that are linked together in a specific sequence. For the proteins to perform their functions, the amino acid chains must crumple, rotate, and twist into stable three-dimensional structures. The stakes are high — just as precise folds and creases are crucial to the art of origami, even minor errors in the protein folding process can result in dysfunctional proteins that contribute to disease.

To date, scientists have identified over 20 causative genes in which mutations can result in Familial Parkinson’s disease, a rare, genetically inherited form of PD affecting individuals under or around the age of 50. Among them is SNCA, which encodes for alpha-synuclein, a small protein abundant in dopamine-producing neurons.

The A53T mutation in SNCA promotes the formation of dysfunctional alpha-synuclein proteins that clump together — almost like a ball of yarn — within dopamine-producing neurons. The accumulation of these protein clumps, also known as Lewy bodies, triggers inflammatory signaling in the brain, eventually killing the affected neurons. However, prior research has also shown that the A53T mutation accelerates the progression of PD, or the rate at which neurons die, although the full molecular mechanisms underlying this process are not yet fully understood.

To uncover pathways involved in this progression, researchers in the Jaenisch Lab turned their attention to star-shaped patrollers called microglia that protect the brain from foreign invaders and respond to injuries, including protein aggregates within neurons. This immune response includes activated microglia trying to clear out Lewy bodies by digesting them, recruiting additional immune cells to the site of neurons with protein aggregates, and even killing off diseased neurons to limit damage to the brain.

But these friends can quickly turn to foes. Over-activated microglia can also degrade healthy neurons in the brain, prompting Jaenisch, Krzisch, and colleagues to investigate if excessive microglia activation is one pathway that contributes to progression in PD.

Microglia go rogue

To explore how the A53T mutation in the SNCA gene affects microglia function in PD, scientists at the Jaenisch Lab began by growing human myeloid precursors — the cells that eventually develop into microglia — in lab culture and transplanting them into the brains of immune-deprived mice.

Given the complexity of the brain, it’s common NetBet sportfor researchers to study brain cells in the Petri dish. “But in cell cultures, microglia do not have the same morphology [form] as in the brain, show signs of chronic activation, and they don’t survive for a very long time,” says Krzisch. “When we transplant them in mice, the precursors differentiate into microglia that look and function like those in the human brain, and survive for the mouse’s lifespan.”

Using this method, the researchers compared the gene expression profiles of A53T-mutant microglia with those that did not carry the mutation, revealing differences in pathways linked to inflammation, microglia activation, and DNA repair. Additionally, when A53T-mutant microglia were exposed to an immune activator called lipopolysaccharide, they exhibited a heightened inflammatory response compared to non-mutant microglia.

In fact, even in non-inflammatory conditions, A53T-mutant microglia had decreased expression of catalase, an enzyme that helps break down harmful reactive oxygen species produced in response to protein aggregates in PD.

Understanding the molecular basis of progression in PD is challenging, which explains why there are currently no drugs to alter the disease’s course. With these findings in hand, researchers at the Jaenisch Lab are now eager to explore how factors like aging also influence microglia function and contribute to an increased rate of progression in PD.

“Overactivation of microglia isn’t the only cause of neuron death in Parkinson’s,” says Jaenisch. “But if we can decrease their activation, it will help us get to the point where we can slow down or actually stop the disease.”

 

Pursuing the secrets of a stealthy parasite

By unraveling the genetic pathways that help Toxoplasma gondii persist in human cells, Sebastian Lourido hopes to find new ways to treat toxoplasmosis.

Anne Trafton | MIT News
August 25, 2024

Toxoplasma gondii, the parasite that causes toxoplasmosis, is believed to infect as much as one-third of the world’s population. Many of those people have no symptoms, but the parasite can remain dormant for years and later reawaken to cause disease in anyone who becomes immunocompromised.

Why this single-celled parasite is so widespread, and what triggers it to reemerge, are questions that intrigue Sebastian Lourido, an associate professor of biology at MIT and member of the Whitehead Institute for Biomedical Research. In his lab, research is unraveling the genetic pathways that help to keep the parasite in a dormant state, and the factors that lead it to burst free from that state.

“One of the missions of my lab to improve our ability to manipulate the parasite genome, and to do that at a scale that allows us to ask questions about the functions of many genes, or even the entire genome, in a variety of contexts,” Lourido says.

There are drugs that can treat the acute symptoms of Toxoplasma infection, which include headache, fever, and inflammation of the heart and lungs. However, once the parasite enters the dormant stage, those drugs don’t affect it. Lourido hopes that his lab’s work will lead to potential new treatments for this stage, as well as drugs that could combat similar parasites such as a tickborne parasite known as Babesia, which is becoming more common in New England.

“There are a lot of people who are affected by these parasites, and parasitology often doesn’t get the attention that it deserves at the highest levels of research. It’s really important to bring the latest scientific advances, the latest tools, and the latest concepts to the field of parasitology,” Lourido says.

NetBet sport

As a child in Cali, Colombia, Lourido was enthralled by what he could see through the microscopes at his mother’s medical genetics lab at the University of Valle del Cauca. His father ran the family’s farm and also worked in government, at one point serving as interim governor of the state.

“From my mom, I was exposed to the ideas of gene expression and the influence of genetics on biology, and I think that really sparked an early interest in understanding biology at a fundamental level,” Lourido says. “On the other hand, my dad was in agriculture, and so there were other influences there around how the environment shapes biology.”

Lourido decided to go to college in the United States, in part because at the time, in the early 2000s, Colombia was experiencing a surge in violence. He was also drawn to the idea of attending a liberal arts college, where he could study both science and art. He ended up going to Tulane University, where he double-majored in fine arts and cell and molecular biology.

As an artist, Lourido focused on printmaking and painting. One area he especially enjoyed was stone lithography, which involves etching images on large blocks of limestone with oil-based inks, treating the images with chemicals, and then transferring the images onto paper using a large press.

“I ended up doing a lot of printmaking, which I think attracted me because it felt like a mode of expression that leveraged different techniques and technical elements,” he says.

At the same time, he worked in a biology lab that studied Daphnia, tiny crustaceans found in fresh water that have helped scientists learn about how organisms can develop new traits in response to changes to their environment. As an undergraduate, he helped develop ways to use viruses to introduce new genes into Daphnia. By the time he graduated from Tulane, Lourido had decided to go into science rather than art.

“I had really fallen in love with lab science as an undergrad. I loved the freedom and the creativity that came from it, the ability to work in teams and to build on ideas, to not have to completely reinvent the entire system, but really be able to develop it over a longer period of time,” he says.

After graduating from college, Lourido spent two years in Germany, working at the Max Planck Institute for Infection Biology. In Arturo Zychlinksy’s lab, Lourido studied two bacteria known as Shigella and Salmonella, which can cause severe illnesses, including diarrhea. His studies there helped to reveal how these bacteria get into cells and how they modify the host cells’ own pathways to help them replicate inside cells.

As a graduate student at Washington University in St. Louis, Lourido worked in several labs focusing on different aspects of microbiology, including virology and bacteriology, but eventually ended up working with David Sibley, a prominent researcher specializing in Toxoplasma.

“I had not thought much about Toxoplasma before going to graduate school,” Lourido recalls. “I was pretty unaware of parasitology in general, despite some undergrad courses, which honestly very superficially treated the subject. What I liked about it was here was a system where we knew so little — organisms that are so different from the textbook models of eukaryotic cells.”

Toxoplasma gondii belongs to a group of parasites known as apicomplexans — a type of protozoans that can cause a variety of diseases. After infecting a human host, Toxoplasma gondii can hide from the immune system for decades, usually in cysts found in the brain or muscles. Lourido found the organism especially intriguing because as a 17-year-old, he had been diagnosed with toxoplasmosis. His only symptom was swollen glands, but doctors found that his blood contained antibodies against Toxoplasma.

“It is really fascinating that in all of these people, about a quarter to a third of the world’s population, the parasite persists. Chances are I still have live parasites somewhere in my body, and if I became immunocompromised, it would become a big problem. They would start replicating in an uncontrolled fashion,” he says.

A transformative approach

One of the challenges in studying Toxoplasma is that the organism’s genetics are very different from those of either bacteria or other eukaryotes such as yeast and mammals. That makes it harder to study parasitic gene functions by mutating or knocking out the genes.

Because of that difficulty, it took Lourido his entire graduate career to study the functions of just a couple of Toxoplasma genes. After finishing his PhD, he started his own lab as a fellow at the Whitehead Institute and began working on ways to study the Toxoplasma genome at a larger scale, using the CRISPR genome-editing technique.

With CRISPR, scientists can systematically knock out every gene in the genome and then study how each missing gene affects parasite function and survival.

“Through the adaptation of CRISPR to Toxoplasma, we’ve been able to survey the entire parasite genome. That has been transformative,” says Lourido, who became a Whitehead member and MIT faculty member in 2017. “Since its original application in 2016, we’ve been able to uncover mechanisms of drug resistance and susceptibility, trace metabolic pathways, and explore many other aspects of parasite biology.”

Using CRISPR-based screens, Lourido’s lab has identified a regulatory gene called BFD1 that appears to drive the expression of genes that the parasite needs for long-term survival within a host. His lab has also revealed many of the molecular steps required for the parasite to shift between active and dormant states.

“We’re actively working to understand how environmental inputs end up guiding the parasite in one direction or another,” Lourido says. “They seem to preferentially go into those chronic stages in certain cells like neurons or muscle cells, and they proliferate more exuberantly in the acute phase when nutrient conditions are appropriate or when there are low levels of immunity in the host.”

New approach enables a closer look at brain cell organelle

Microglia are involved in brain development, as well as neurodegeneration and brain cancer. A new approach from the Jaenisch Lab allows researchers to isolate and analyze microglia phagosomes.

Greta Friar | Whitehead Institute
August 14, 2024

Microglia are the immune system’s front-line enforcers in the brain. They are cells that patrol the brain and destroy anything harmful that they encounter, from invading bacteria to cellular debris. They also remove plaques and prune dysfunctional synapses between neurons. Microglia eliminate their targets by eating them: they envelope material and seal it in bubble-like organelles called phagosomes. A phagosome can then fuse with other organelles that break down its contents.

Microglial phagosomes play important roles in brain development, brain function and a plethora of brain diseases, including neurodegeneration and brain cancer. Therefore, understanding microglial phagosome biology could help to develop new therapies for currently untreatable brain diseases. However, microglia and their organelles have been difficult to study because existing stem cell and animal models insufficiently resemble microglia in the human brain, and because microglia, as vigilant immune patrollers, react to even subtle stimuli and so experimental conditions can trigger changes in the cells that confound analyses.

To overcome those issues, Whitehead Institute Founding Member Rudolf Jaenisch, also a professor of biology at the Massachusetts Institute of Technology; University of Freiburg Professor of Neuropathology Marco Prinz; and University of Freiburg neuropathologist Emile Wogram, who began this project as a postdoctoral researcher in Jaenisch’s lab, have developed a method to isolate and analyze microglia phagosomes in a rapid, gentle, and unbiased fashion.

In research shared in the journal Immunity on August 15, the researchers describe how they can isolate and profile phagosomes from stem cell-derived microglia and fresh human brain tissue. They also share new insights into phagosome biology in the human brain, regarding synaptic pruning and generation of NAD+, a broadly used molecule in the brain, by microglia.

The method that the researchers developed to isolate phagosomes from cells uses immunoprecipitation, in which antibodies latch on to a specific target protein on an organelle’s surface. When the antibodies are collected, they pull the organelles with them. This technique avoids many chemical perturbations that might alter the microglial profile. Sometimes researchers genetically engineer a target for the antibodies, but in order to isolate phagosomes from human brain tissue, Wogram had to find a naturally expressed target. Eventually, he and colleagues found one: the protein CD68.

The researchers first isolated phagosomes from stem cell-derived microglia. They co-cultured the microglia with other brain cell types to create a more brain-like environment, which led to a better match between brain and stem cell-derived microglia gene expression. They triggered some of the microglia to enter an inflammatory or disease-like state to see how that affected the phagosomes. Additionally, Wogram NetBet sportcollaborated with the neurosurgery department at the University of Freiburg to get access to brain tissues immediately after their removal during surgery. He isolated phagosomes from brain tissue within a half hour of its removal, allowing him to profile the organelles before their contents could change much.

The profiles that the researchers built included what proteins and metabolites the phagosomes contained, and the whole-cell gene expression profile. The profiles differed significantly between sets of phagosomes, but the researchers identified a core of consistent proteins, including many known and also some unknown phagosome proteins. The results showed that phagosomes contain sensitive signaling molecules that allow them to react quickly to even subtle environmental stimuli.

Additionally, the protein contents of the co-cultured microglia provided strong evidence that when microglia prune synapses, they predominantly prune the side that sends a signal and not the side that receives one. This insight could be useful for understanding how microglia interact with synapses in health and disease.

The researchers also gained insights into a key metabolic pathway that occurs inside of microglia. In excess, the molecule quinolinic acid can be toxic to neurons; it is implicated as involved in many neurodegenerative diseases. However, cells can use quinolinic acid to make NAD+, a molecule broadly used to carry out essential cellular functions. Microglia are the only brain cells that generate NAD+. Wogram and colleagues found that key steps in this process occur in phagosomes. Phagosomes are therefore necessary both for removing excess quinolinic acid to prevent toxicity and for helping to generate NAD+ in the brain.

Finally, Wogram used brain tissues to compare phagosomes from within a tumor to those in the surrounding healthy tissue. The phagosomes in the tumor contained excess quinolinic acid. Although follow-up studies would be needed to confirm the results, these findings are consistent with research that suggests cancer cells use quinolinic acid to fuel their growth.

Collectively, these findings illuminate aspects of phagosome biology and the roles that phagosomes may play in normal brain development and maintenance, as well as in cancer and neurodegeneration. The researchers also anticipate that their method could prove useful for profiling other organelles, especially when the organelles need to be rapidly isolated from human tissue.

In immune cells, X marks the spot(s)

By researching the effects of sex chromosomes on two types of immune cells, researchers in the Page Lab explore the biological underpinnings of sex biases in immunity and autoimmune disease

Greta Friar | Whitehead Institute
August 6, 2024

There are many known sex differences in health and disease: cases in which either men or women are more likely to get a disease, experience a symptom, or have a certain drug side effect. Some of these sex differences are caused by social and environmental factors: for example, when men smoked more than women, men were more likely to develop lung cancer. However, some have biological underpinnings. For example, men are more likely to be red-green colorblind because the relevant gene is on the X chromosome, of which men with XY chromosomes have no backup copy for a dysfunctional version.

Often, the specific factors contributing to a sex difference are hard to tease apart; there may not be a simple way to tell what is caused by sex chromosomes versus sex hormones versus environment. To address this question, researchers in Whitehead Institute Member David Page’s lab previously developed an approach to identify the contributions of the sex chromosomes to sex differences. Now, Page and former postdoc in his lab Laura Blanton have built on that work by measuring the effects of the sex chromosomes on two types of immune cells. The work, published in the journal Cell Genomics on August 6, shows that sex chromosome gene expression is consistent across cell types, but that its effects are cell type specific.

Sex differences are common in the function and dysfunction of our immune system. Examples include the typically weaker male immune response to pathogens and vaccines, and the female-biased frequency of autoimmune diseases. Page and Blanton’s work in immune cells examines several genes that have been implicated in such sex differences.

Developing a method to measure sex chromosome influence

The approach that the researchers used is based on several facts about sex chromosomes. Firstly, although females typically have two X chromosomes and males typically have one X and one Y, there are people with rare combinations of sex chromosomes, who have anywhere from 1-5 X chromosomes and 0-4 Y chromosomes. Secondly, there are two types of X chromosome: The active X chromosome (Xa) and the inactive X chromosome (Xi). They are genetically identical, but many of the genes on Xi are either switched off or have their expression level dialed way down.

Xa does not really function as a sex chromosome since everyone in the world has exactly one Xa regardless of their sex. In people with more than one X chromosome, any additional X chromosomes are always Xi. Furthermore, Page and Blanton’s research demonstrates that Xa responds to gene expression by Xi and Y—the sex chromosomes—in the same manner as do the other 22 pairs of non-sex chromosomes—the autosomes.

With these facts in mind, the researchers collected cells from donors with different combinations of sex chromosomes. Then they measured the expression of every gene in these cells, across the donor population, and observed how the expression of each gene changed with the addition of each Xi or Y chromosome.

This approach was first shared in a Cell Genomics paper by Page and former postdoc Adrianna San Roman in 2023. They had cultured two types of cells, fibroblasts and lymphoblastoid cell lines, from donor tissue samples. They found that the effects of Xi and Y were modular—each additional chromosome changed gene expression by about the same amount. This approach allowed the researchers to identify which genes are sensitive to regulation by the sex chromosomes, and to measure the strength of the effect for each responsive gene.

In that and a following paper, Page and San Roman looked at how Xi and Y affect gene expression from Xa and the autosomes. Blanton expanded the study of Xi and Y by using the same approach in two types of immune cells, monocytes and CD4+ T cells, taken directly from donors’ blood. Studying cells taken directly from the body, rather than cells cultured in the lab, enabled the researchers to confirm that their observations applied in both conditions.

In all three papers, the researchers found that the sex chromosomes have significant effects on the expression levels of many genes that are active throughout the body. They also identified a particular pair of genes as driving much of this effect in all four cell types. The genes, ZFX and ZFY, found on the X and Y chromosomes respectively, are transcription factors that can dial up the expression of other genes. The pair originates from the same ancestral gene, and although they have grown slightly apart since the X and Y chromosomes diverged, they still perform the same gene regulatory function. The researchers found that they tended to affect expression of the same gene targets by similar though not identical amounts.

In other words, the presence of either sex chromosome causes roughly the same effect on expression of autosomal and Xa genes. This similarity makes sense: carefully calibrated gene regulation is necessary in every body, and so each sex chromosome must maintain that function. It does, however, make it harder to spot the cases in which sex chromosomes contribute to sex differences in health and disease.

“Sex differences in health and disease could stem from the rare instances in which one gene responds very differently to Xi versus Y—we found cases where that occurs,” Blanton says. “They could also stem from subtle differences in the gene expression changes caused by Xi and Y that build up into larger effects downstream.”

Blanton then combined her and San Roman’s data in order to look at how the effects of sex chromosome dosage—how many Xs or Ys are in a cell—compared across all four cell types.

The effects of sex chromosomes on immune cells

 Blanton found that gene expression from the sex chromosomes was consistent across all four cell types. The exceptions to this rule were always X chromosome genes that are only expressed on Xa, and so could be regulated by Xi and Y in the way that autosomal genes are. This contrasts with speculation that different genes on Xi might be silenced in different cells.

However, each cell type had a distinct response to this identical sex chromosome gene expression. Different biological pathways were affected, or the same biological pathway could be affected in the opposite direction. Key immune cell processes affected by sex chromosome dosage in either monocytes or T cells included production of immune system proteins, signaling, and inflammatory response.

The cell type specific responses were due to different genes responding to the sex chromosomes in each cell type. The researchers do not yet know the mechanism causing the same gene to respond to sex chromosome dosage in one cell type but not another. One possibility is that access to the genes is blocked in some of the cell types. Regions of DNA can become tightly packed so that a gene, or a DNA region that regulates the gene, becomes inaccessible to transcription factors such as ZFX and ZFY, and so they cannot affect the gene’s expression. Another possibility is that the genes might require specific partner molecules in order for their expression level to increase, and that these partners may be present in one cell type but not the other.

Blanton also measured how X chromosome dosage affected T cells in their inactive state, when there is no perceived immune threat, versus their activated state, when they begin to produce an immune response and replicate themselves. Increases in X chromosome dosage led to heightened activation, with increased expression of genes related to proliferation. This finding highlights the importance of looking at how sex chromosomes affect not just different cell types, but cells in different states or scenarios.

“As we learn what pathways the sex chromosomes influence in each cell type, we can begin to make sense of the contributions of the sex chromosomes to each cell type’s functions and its roles in disease,” Blanton says.

Although Page and Blanton found that the presence of an Xi or Y chromosome had very similar effects on most genes, the researchers did identify one interesting case in which response to X and Y differed. FCG2RB is a gene involved in immunity that has been implicated in and thought to contribute to the female bias in developing systemic lupus erythematosus (SLE). Blanton found that unlike most genes, FCGR2B is sensitive to X and not Y chromosome dosage. This strengthens the case that higher expression of FCGR2B could be driving the SLE female bias.

FCGR2B provides a promising opportunity to study the contributions of the sex chromosomes to a sex bias in disease, and to learn more about the biology of a chronic disease that affects many people around the world,” Page says.

In other cases, the researchers found that genes which have been suspected to contribute to female bias in disease did not have a strong response to X chromosome dosage. For example, TLR7 is thought to contribute to female bias in developing autoimmunity, and CD40LG is thought to contribute to female bias in developing lupus. Neither of the genes showed increased expression as X chromosome dosage increased. This suggests that other mechanisms may be driving the sex bias in these cases.

Because of the limited pool of donors, the researchers were not able to identify every gene that responds to sex chromosome dosage, and future research may uncover more sex-chromosome-sensitive genes of interest. Meanwhile, the Page lab continues to investigate the sex chromosomes’ shared role as regulators of gene expression throughout the body.

“We’ve got to recalibrate our thinking from the view that X and Y are mainly involved in differentiating males and females, to understanding that they also have largely shared functions that are important throughout the body,” Page says. “At the same time, I think that uncovering the biology of Xi is going to be incredibly important for understanding women’s health and sex differences in health and disease.”

Unusual Labmates: Meet tardigrades, the crafters of nature’s ultimate survival kit

Whitehead Institute Member Siniša Hrvatin is studying tardigrades to decode the mechanisms enabling their survival in extreme NetBet live casinoenvironmental conditions. Learn about the biology of these microscopic “water bears” and what makes them a particularly fascinating model organism.

Shafaq Zia | Whitehead Institute
July 23, 2024

Tardigrades, also affectionately known as “water bears” or “moss piglets”, are remarkable microscopic organisms that have captured the imagination of scientists and nature enthusiasts alike.

With adults measuring anywhere from 0.2 to 1.2 millimeters in length — as big as a grain of salt — tardigrades possess the astounding ability to survive harsh NetBet live casinoenvironmental conditions. These resilient creatures have been found in habitats ranging from the depths of oceans and hot radioactive springs to the frigid expanses of Antarctica. It is their unparalleled adaptability that makes them invaluable as a model organism for researchers like Whitehead Institute Member Siniša Hrvatin, who’s studying physiological adaptation in animals with a focus on states that can slow down tissue damage, disease progression, and even aging.

Follow along to learn what’s behind tardigrades’ nearly indestructible nature, how researchers at Whitehead Institute — and beyond — are studying them, and what insights this work can offer into long-term organ preservation, space exploration, and more.

Big discovery of a tiny creature

In 1773, German naturalist Johann August Ephraim Goeze was analyzing moss samples under a microscope when he stumbled upon an unusual creature. Captivated by its peculiar appearance, he continued his observations and documented the discovery of Kleiner Wasserbär, translating to “little water bear”, in his publication. This work also featured the first-ever drawing of a tardigrade.

Since then, researchers’ understanding of this remarkable organism has evolved alongside advancements in imaging technology. Today, tardigrades are recognized as bilaterally symmetrical invertebrates with two eyes and eight chubby legs adorned with hook-like claws. Often described as a mix between nematodes and insects, these extremophiles are able to withstand freezing, intense radiation, vacuum of outer space, desiccation, chemical treatments, and possibly more.

And the best part? Despite their otherworldly appearance and surprising capabilities, tardigrades share plenty of similarities with larger, more complex organisms, including possessing a primordial brain, muscles, and even a digestive system.

The biology of an extremophile

Researchers trace the evolutionary origins of tardigrades back to panarthropods, a group that includes now-extinct worm-like organisms called lobopodians. To date, over a thousand species of tardigrades have been identified, with terrestrial species inhabiting environments like moss, leaf litter, and lichen, grassland, and deserts while aquatic ones are found in both fresh and saltwater.

Little is known about tardigrades’ diet but researchers are particularly drawn to herbivorous ones that like to munch on single-celled algae and thrive in water. There’s good reason for it: algae are inexpensive to grow in the lab with just light and basic nutrients. But it’s not just their diet that makes tardigrades an attractive model organism — they also have a short generation time (11 to 14 days), with eggs hatching within a four-day span. In fact, some species are able to reproduce without sexual reproduction through a process called parthenogenesis, during which the female egg undergoes cell division without fertilization by a male gamete.

Although genomic resources for studying tardigrades are limited to only a few species, researchers from Keio University and University of Edinburgh have successfully sequenced the genome of a moss-residing tardigrade commonly used in research called Hypsibius exemplaris. Its genome is less than half the size of a Drosophila melanogaster genome, consisting of 105 million base pairs that serve as the building blocks of DNA.

In spite of their small genome — and only a few thousand cells in the body — tardigrades have a well-defined miniaturized body plan, consisting of a head and four segments, that holds valuable insights for researchers looking to decode their adaptation prowess.

Inside tardigrade research at Whitehead Institute

In 2022, as Hrvatin was setting up his lab at Whitehead Institute, a question lingered in his mind. “I was trying to find animals that can survive being frozen for long periods of time and then continue living,” he says. “But there are not that many that fit the bill.”

Then, an undergraduate student at Massachusetts Institute of Technology (MIT) expressed her enthusiasm for astrobiology — the study of life across the universe — and highlighted tardigrades as a favorite among space researchers. Hrvatin was intrigued.

Up until this point, his research had centered upon two states of dormancy, or reduced metabolic activity, in animals: hibernation and a shorter, less intense torpor. But tardigrades possessed a survival mechanism unlike any other. When faced with harsh conditions like dehydration, they would expel water, retract their head and legs, and curl up in a small, dry ball, entering a state of suspended animation called crytobiosis or tun formation.

For decades, researchers hypothesized that the tun state might be responsible for tardigrades’ unparalleled ability to withstand a myriad of environmental assaults, including extremely low temperature. However, recent work has revealed that these animals utilize a separate and unique adaptation, distinct from the tun state, to survive being frozen for extended periods. In fact, preliminary evidence from a preprint by a team of scientists at UC Berkeley and UC San Francisco illustrates unique patterns of how tardigrades survive freezing while hydrated in water.

This phenomenon is markedly different from hibernation and its cousin torpor. “Unlike animals lowering their body temperature, we’re talking about putting tardigrades at minus 180 degrees Celsius, and then thawing them,” says Hrvatin. In fact, cryobiosis is so intense that tardigrades’ metabolic activity drops to undetectable levels, rendering them virtually, but not quite, dead. The organisms can then remain in this state from months to years, only to revive as healthy when conditions become favorable once again.

Frozen in time

In 2014, a group of Japanese researchers at Tokyo’s National Institute for Polar Research undertook an intriguing experiment. They began by thawing moss samples collected from East Antarctica in November 1983. Then, they carefully teased apart each sample using tweezers to retrieve tardigrades that might be nestled within. Among the tardigrades the researchers found, two stood out: Sleeping Beauty 1 and Sleeping Beauty 2 who were believed to be undergoing cold induced-dormancy. Turns out, the researchers were right — within the first day of being placed in the Petri dish with water, the tardigrades began exhibiting slow movements despite having been frozen for over 30 years.

The Swiss army knife in tardigrades’ toolbox

Yet, the remarkable resilience of tardigrades continues to baffle scientists. Recently, they’ve uncovered what could be another potential weapon in the creatures’ arsenal: intrinsically disordered proteins or IDPs. Picture them as putty — a group of proteins that do not have a well-defined three-dimensional structure and can interact with other molecules to produce a range of different outcomes. Some researchers have linked these tardigrade-specific IDPs to the animals extraordinary resilience: under extreme heat, these proteins remain stable. And when desiccated, they form protective glasses that shield cells and vital enzymes from dehydration.

If confirmed, the implications of this work would extend beyond tardigrades’ survival, potentially revolutionizing dry vaccine storage and the development of drought-resistant crops.

Pausing the biological clock

This is just the tip of the iceberg — scientists have plenty more to discover about these microscopic organisms. At the Hrvatin lab, graduate student Aleksandar Markovski is working with six different species of tardigrades, with a particular focus on an aquatic species isolated from the bottom of a lake.

Markovski’s work entails conducting a range of experiments aimed at unraveling tardigrades’ mysterious biology. This includes RNA-sequencing to understand how tardigrades recover after a freeze-thaw cycle; knocking-down and knocking-in genes to investigate the function and relevance of different genes and pathways; performing electron microscopy for high-resolution visualization of cellular structures and morphological changes that may be taking place in the frozen state.

The ultimate goal of this work, Markovski says, is to extend the shelf life of humans. “Whenever someone donates an organ, it can be stored for hours on ice. Then, unless someone in close proximity is in need of that organ and is compatible, the organ has to be thrown away,” he adds. “But if you were able to freeze those organs and transplant them whenever needed, that would be revolutionary.”

Achilles heel

Tardigrades are best known for surviving in the margins of typical life, but they also share a surprising vulnerability with humans and most other organisms: climate change. Entering the tun state to withstand high temperatures requires desiccation. If the water temperature goes up before the tardigrades have had the opportunity to dry out, they’re stuck in a vulnerable state, where they can ultimately succumb to heat.

But all is not lost. Tardigrades, the first microscopic interstellar travelers capable of surviving vacuum and radiation in outer space, are also paving the path for human space exploration with a protein called Damage suppressor or Dsup, which binds to DNA and shields it from reactive forms of oxygen.

Researchers are drawing hope and inspiration from their unparalleled persistence, envisioning that these organisms cannot only ensure their survival but also aid humanity.

Gene silencing tool has a need for speed

Small changes in the molecular machines that carry out RNA interference can lead to big differences in the efficacy of gene silencing. These new findings from the Bartel Lab have implications for the design of gene-silencing therapeutics.

Greta Friar | Whitehead Institute
July 17, 2024

RNA interference (RNAi) is a process that many organisms, including humans, use to decrease the activity of target RNAs in cells by triggering their degradation or slicing them in half. If the target is a messenger RNA, the intermediary between gene and protein, then RNAi can decrease or completely silence expression of the gene. Researchers figured out how to tailor RNAi to target different RNAs, and since then it has been used as a research tool to silence genes of interest. RNAi is also used in a growing number of therapeutics to silence genes that contribute to disease.

However, researchers still do not understand some of the biochemistry underlying RNAi. Slight differences in the design of the RNAi machinery can lead to big differences in how effective it is at decreasing gene expression. Through trial and error, researchers have worked out guidelines for making the most effective RNAi tools without understanding exactly why they work. However, Whitehead Institute Member David Bartel and graduate student in his lab Peter Wang have now dug deeper to figure out the mechanics of the main cellular machine involved in RNAi. The researchers’ findings, shared in Molecular Cell on July 17, not only provide explanations for some of the known rules for RNAi tool design, but also provide new insights that could improve future designs.

Slicing speed is highly variable

The cellular machine that carries out RNAi has two main parts. One is a guide RNA, a tiny RNA typically only 22 bases or nucleotides long. RNA, like DNA, is made of four possible bases, although RNA has the base uracil (U) instead of the DNA base thymine (T). RNA bases bind to each other in certain pairings—guanines (G) pair to cytosines (C) and adenines (A) pair to U’s—and the sequence of bases in the guide RNA corresponds to a complementary sequence within the target RNA. When the guide RNA comes across a target, the corresponding bases pair up, binding the RNAs. Then the other part of the RNAi machine, an Argonaute protein bound to the guide RNA, can slice the target RNA in half or trigger the cell to break it down more gradually.

In humans, AGO2 is the Argonaute protein that is best at slicing. Only a couple dozen RNA targets actually get sliced, but these few targets play essential roles in processes such as neuron signal control and accurate body shape formation. Slicing is also important for RNAi tools and therapeutics.

netbet sports bettingIn order for AGO2 to slice its target, the target must be in the exact right position. As the guide and target RNAs bind together, they go through a series of motions to ultimately form a double helix. Only in that configuration can AGO2 slice the target.

Researchers had assumed that AGO2 slices through different target RNAs at roughly the same rate, because most research into this process used the same few guide RNAs. These guide RNAs happen to have similar features, and so similar slicing kinetics—but they turn out not to be representative of most guide RNAs.

Wang paired AGO2 with a larger variety of guide RNAs and measured the rate at which each AGO2-guide RNA complex sliced its targets. He found big differences. Whereas the commonly used guide RNAs might differ in their slicing rate by 2-fold, the larger pool of guide RNAs differed by as much as 250-fold. The slicing rates were often much slower than the researchers expected. Previously, researchers thought that all targets could be sliced relatively quickly, so the rate wasn’t considered as a limiting factor – other parts of the process were thought to determine the overall pace – but Wang found that slicing can sometimes be the slowest step.

“The important consideration is whether the slicing rate is faster or slower than other processes in the cell,” Wang says. “We found that for many guide RNAs, the slicing rate was the limiting factor. As such, it impacted the efficacy.”

The slower AGO2 is to slice targets, the more messenger RNAs will remain intact to be made into protein, meaning that the corresponding gene will continue being expressed. The researchers observed this in action: the guide RNAs with slower slicing rates decreased target gene expression by less than the faster ones.

Small changes lead to big differences in slicing rate

Next, the researchers explored what could be causing such big differences in slicing rate between guide RNAs. They mutated guide RNAs to swap out single bases along the guide RNA’s sequence—say, switching the 10th base in the sequence from a C to an A—and measured how this changed the slicing rate.

“The important consideration is whether the slicing rate is faster or slower than other processes in the cell,” Wang says. “We found that for many guide RNAs, the slicing rate was the limiting factor. As such, it impacted the efficacy.”

The researchers found that slicing rate increased when the base at position 7 was an A or a U. The bases A and U pair more weakly than C and G. The researchers found that having a weak A-U pair at that position, or a fully mismatched pair at position 6 or 7, may allow a kink to form in the double helix shape that actually makes the target easier to slice. Wang also found that slicing rate increases with certain substitutions at the 10th and the 17th base positions, although the researchers could not yet determine possible underlying mechanisms.

These observations correspond to existing recommendations for RNAi design, such as not using a G at position 7. The new work demonstrates that the reason these recommendations work is because they affect the slicing rate, and, in the case of position 7, the new work further identifies the specific mechanism at play.

Interplay between regions matters

People designing synthetic guide RNAs thought that the bases at the tail end, past the 16th position, were not very important. This is because in the case of the most commonly used guide RNAs, the target will be rapidly cleaved even if all of the tail end positions are mismatches that cannot pair.

However, Wang and Bartel found that the identity of the tail end bases are only irrelevant in a specific scenario that happens to be true of the most commonly used guide RNAs: when the bases in the center of the guide RNA (positions 9-12) are strong-pairing Cs and Gs. When the center pairings are weak, then the tail end bases need to be perfect matches to the target RNA. The researchers found that guide RNAs could have up to a 600-fold difference in tolerance for tail end mismatches based on the strength of their central pairings.

The reason for this difference has to do with the final set of motions that the two RNAs must perform in order to assume their final double helix shape. A perfectly paired tail end makes it easier for the RNAs to complete these motions. However, a strong enough center can pull the RNAs into the double helix even if the tail ends are not ideally suited for doing so.

The observation that weak central pairing requires perfect or near perfect tail end matches could provide a useful new guideline for designing synthetic RNAs. Any guide RNA runs the risk of sometimes binding other messenger RNAs that are similar enough to the intended target RNA. In the case of a therapy, this off-target binding can lead to negative side effects. Bartel and Wang suggest that researchers could design guide RNAs with weak centers, which would require more perfect pairing in the tail end, so that the guide RNA will be less likely to bind non-target RNAs; only the perfect pairing of the target’s RNA sequence would suffice.

Altogether, Wang and Bartel’s findings explain how small differences between guide RNAs can make such large differences in the efficacy of RNAi, providing a rationale for the long-standing RNAi design guidelines. Some of the findings even suggest new guidelines that could help with future synthetic guide RNA designs.

“Discovering the interplay between the center and tail end of the guide RNA was unexpected and satisfying,” says Bartel, who is also a professor at the Massachusetts Institute of Technology and a Howard Hughes Medical Investigator. “It explains why, even though the guidelines suggested that tail-end sequence doesn’t matter, the target RNAs that are sliced in our cells do have pairing to the tail end. This observation could prove useful to reduce off-target effects in RNAi therapeutics.”

A genome-wide screen in live hosts reveals new secrets of parasite infection

Researchers in the Lourido Lab performed the first genome-wide screen of Toxoplasma gondii in live hosts, revealing genes that are important for infection but previously undetected in cell culture experiments. 

Greta Friar | Whitehead Institute
July 8, 2024

Apicomplexan parasites are a common cause of disease, infecting hundreds of millions of people each year. They are responsible for spreading malaria; cryptosporidiosis – a severe childhood diarrheal disease; and toxoplasmosis – a disease that endangers immune compromised people and fetuses, and is the reason why pregnant women are told to avoid changing cat litter. Apicomplexan parasites are very good at infecting humans and many other animals, and persisting inside of them. The more that researchers can learn about how apicomplexans infect hosts, the better they will be able to develop effective treatments against the parasites.

To this end, researchers in Whitehead Institute Member Sebastian Lourido’s lab, led by graduate student Christopher Giuliano, have now completed a genome-wide screen of the apicomplexan parasite Toxoplasma gondii (T. gondii), which causes toxoplasmosis, during its infection of mice. This screen shows how important each gene is for the parasite’s ability to infect a host, providing clues to genes’ functions. In the journal Nature Microbiology on July 8, the researchers share their approach for tracing lineages of parasites in a live host, and some specific findings of interest—including a possible anti-parasitic drug target.

From dish to animal

Researchers in Lourido’s lab previously developed a screen to test the function of every T. gondii gene in cells in a dish in 2016. They used CRISPR gene editing technology to make mutant parasites in which each lineage had one gene inactivated. The researchers could then assess the importance of each gene to a parasite’s fitness, or ability to thrive, based on how well the mutants missing that gene did. If a mutant died off, this implied that its inactivated gene is essential for the parasite’s survival.

This screen taught the researchers a lot about T. gondii’s biology but faced a common limitation: the parasites were studied in a dish rather than a live host. Cell culture provides an easier way to study parasites, but the conditions are not the same as what parasites face in an animal host. A host’s body is a more complex and dynamic environment, so it may require parasites to rely on genes that they don’t need in the artificial setting of cell culture.

To overcome this limitation, researchers in Lourido’s lab figured out how to repeat the T. gondii genome-wide screen, which their colleagues in the lab had previously done in cell culture, in live mice. This was a massive undertaking, which required solving various technical challenges and running a large number of parallel experiments. T. gondii has around eight thousand genes, so the researchers performed pooled experiments, with each mouse getting infected by many different mutants—but not so many as to overwhelm the mouse. This meant that the researchers needed a way to more closely monitor the trajectories of mutants in the mouse. They needed to track the lineages of parasites that carried the same mutation over time, as this would allow them to see how different replicate lineages of a particular mutant performed.

“This is an outstanding resource,” says Lourido. “The results of the screen reveal such a broader spectrum of ways in which the parasites are interacting with hosts, and enrich our perception of the parasites’ abilities and vulnerabilities.”
The researchers added barcodes to the CRISPR tools that inactivated a gene of interest in the parasite. When they harvested the parasites’ descendants, the barcode would identify the lineage, distinguishing replicate parasites that had been mutated in the same way. This allowed the researchers to use a population-based analytical approach to rule out false results and decrease experimental noise. Then they could draw conclusions about how well each lineage did. Lineage tracing allowed them to map how different populations of parasites traveled throughout the host’s body, and whether some populations grew better in one organ versus another.

The researchers found 237 genes that contribute to the parasite’s fitness more in a live host than in cell culture. Many of these were not previously known to be important for the parasite’s fitness. The genes identified in the current screen are active in different parts of the parasite, and affect diverse aspects of its interactions with a host. The researchers also found instances in which parasite fitness in a live host increased when a gene was inactivated; these genes may be, for example, related to signals that the host immune system uses to detect the parasites. Next, the researchers followed up on several of the fitness-improving genes that stuck out as of particular interest.

Genes that make the difference in a live host

One gene that stuck out was GTP cyclohydrolase I (GCH), which codes for an enzyme involved in the production of the essential nutrient folate. Apicomplexans rely on folate, and so the researchers wanted to understand GCH’s role in securing it for the parasite. Cell culture media contains high levels of folate, and in this nutrient-rich environment, GCH is not essential. However, in a live mouse, the parasite must both scavenge folate and synthesize it using the metabolic pathway containing GCH. Lourido and Giuliano uncovered new details of how that pathway works.

Although previously GCH’s role was not fully understood, the importance of folate for apicomplexans is a well-known vulnerability that has been used to design anti-parasitic therapies. The anti-folate drug pyrimethamine was commonly used to treat malaria, but many parasites have developed resistance to it.

Some drug-resistant apicomplexans have increased the number of GCH gene copies that they have, suggesting that they may be using GCH-mediated folate synthesis to overcome pyrimethamine. The researchers found that combining a GCH inhibitor with pyrimethamine increased the efficacy of the drug against the parasites. The GCH inhibitor was also effective on its own. Unfortunately, the currently available GCH inhibitor targets mammalian as well as parasitic folate pathways, and so is not safe for use in animals. Giuliano and colleagues are working on developing a GCH inhibitor that is parasite-specific as a possible therapy.

“There was an entire half of the folate metabolism pathway that previously looked like it wasn’t important for parasites, simply because people add so much folate to cell culture media,” Giuliano says. “This is a good example of what can be missed in cell culture experiments, and what’s particularly exciting is that the finding has led us to a new drug candidate.”

Another gene of interest was RASP1. The researchers determined that RASP1 is not involved in initial infection attempts, but is needed if the parasites fail and need to mount a second attempt. They found that RASP1 is needed to reload an organelle of the parasites called a rhoptry that the parasites use to breach and reprogram netbet sports betting apphost cells. Without RASP1, the parasites could only deploy one set of rhoptries, and so could only attempt one invasion.

Identifying the function of RASP1 in infection also demonstrated the importance of studying how parasites interact with different cell types. In cell culture, researchers typically culture parasites in fibroblasts, a connective tissue cell. The researchers found that parasites could invade fibroblasts with or without RASP1, suggesting that this cell type is easy for them to invade. However, when the parasites tried to invade macrophages, an immune cell, those without RASP1 often failed, suggesting that macrophages present the parasites with more of a challenge, requiring multiple attempts. The screen uncovered other probable cell-type specific pathways, which would not have been found using only model cell types in a dish.

The screen also highlighted a previously unnamed gene that the researchers are calling GRA72. Previous studies suggested that this gene plays a role in the vacuole or protective envelope that the parasite forms around itself. The Lourido lab researchers confirmed this, and discovered additional details of how the absence of GRA72 disrupts the parasite vacuole.

A rich resource for the future

Lourido, Giuliano, and colleagues hope that their findings will provide new insights into parasite biology and, especially in the case of GCH, lead to new therapies. They intend to continue pulling from the treasure trove of results—their screen identified many other genes of interest that require follow-up—to learn more about apicomplexan parasites and their interactions with mammalian hosts. Lourido says that other researchers in his lab have already used the results of the screen to guide them towards relevant genes and pathways in their own projects.

“This is an outstanding resource,” says Lourido, who is also an associate professor of biology at MIT. “The results of the screen reveal such a broader spectrum of ways in which the parasites are interacting with hosts, and enrich our perception of the parasites’ abilities and vulnerabilities.”

“Vaults” within germ cells offer more than safekeeping

Ribonucleoprotein (RNP) granules are believed to preserve maternal mRNA within eggs and developing embryos. The Lehman Lab reveals that a specific type of RNP granule also plays an active role in translating the mRNA that is crucial for specifying germ cells.

Shafaq Zia | Whitehead Institute
July 2, 2024

Maternal messenger RNAs (mRNAs), located within the cytoplasm of an immature egg, are crucial for jump starting development. Following fertilization, these mRNAs are passed onto the zygote, the first newly formed cell. Having been read from the maternal DNA genetic code, they serve as the sole templates for protein production essential for early development until the zygote’s own genes become active and take over.

Many maternal mRNAs are stored in ribonucleoprotein (RNP) granules, which are a type of membrane-less compartments, or condensates, within eggs and developing embryos. These granules are believed to preserve the mRNA in a “paused” state until the encoded proteins are needed for specific developmental processes upon fertilization of the egg cell. Then, certain developmental signals kick in to instruct the RNP granules to release the stored mRNA so the instructions can be translated into a functional protein.

One type of RNP granules called germ granules is found in embryo germplasm, a cytoplasmic region that gives rise to germ cells, which become the eggs or sperms of adult flies. Whitehead Institute Director Ruth Lehmann studies how germ cells form and transmit their genetic information across generations. Her lab is particularly interested in understanding how germ granules in embryos localize and regulate maternal mRNAs.

Now, Lehmann, along with graduate student Ruoyu Chen and colleagues, has uncovered that the role of germ granules in fruit flies (Drosophila melanogaster) extends beyond safeguarding maternal mRNAs. Their findings, published in the journal Nature Cell Biology on July 4, demonstrate that germ granules also play an active role in translating, or making into protein, a specific maternal mRNA, called nanos, crucial for specifying germ cells and the abdomen of the organism.

“Traditionally, scientists have thought of RNP granules as a dead zone for translation,” says Chen. “But through high-resolution imaging, we’ve challenged this notion and shown that the surface of these granules is actually a platform for translation of nanos mRNA.”

RNP granules act as vaults

Within a developing embryo, various fate-determining proteins dictate whether a cell will become a muscle, nerve, or skin cell in a fully-formed body. Nanos, a gene with conserved function in Drosophila and humans, guides the production of Nanos protein which instructs cells to develop into germline. Mutations in the nanos gene cause sterility in animals.

During early embryonic development, Nanos protein also helps establish the body plan of the fruit fly embryo — it specifies the posterior end or abdominal region, and guides the ordered development of tissues along the length of the body, from head to tail. In embryos with impaired Nanos function, the consequences are fatal.

“When Nanos protein isn’t functioning properly, the fruit fly embryos are really short,” says Chen. “This is because the embryo has no abdomen, which is basically half of its body. Nanos also has a second function that is conserved from flies to humans. This function is very local and instructs the cells with lots of Nanos to become germ cells. ”

Given Nanos’ vital role, embryos must safeguard instructions for its production until the embryo reaches a specific stage of development, when it is time to define the posterior region. Previous work has indicated that germ granules in the germplasm and germ cells can act like vaults, shielding the nanos mRNA from degradation or premature translation.

However, while the mRNA instructions for building the protein are distributed throughout the embryo, Nanos protein is found only in regions where germ granules reside. The mRNA does not get translated elsewhere in the embryo because of a regulatory protein called Smaug, named after the golden dragon depicted in J. R. R. Tolkien’s 1937 novel The Hobbit. Smaug binds to a non-protein coding segment of the mRNA known as the 3’ untranslated region (3’ UTR), extending beyond the protein-coding sequence, effectively suppressing the translation process.

For Lehmann, Chen, and their colleagues, this hinted at an intriguing relationship between nanos mRNA and germ granules. Are the granules essential for translating nanos mRNA into a functional protein? And if they are, is their role primarily to serve as a safekeeping place to evade repression by Smaug or do they actively facilitate the translation of nanos mRNA too?

To answer these questions, the researchers combined high-resolution imaging with a technique called the SunTag system to directly visualize the translation of nanos mRNA within Drosophila germ granules at the single-molecule level.

Unlike green fluorescent protein tagging, where a single fluorescent molecule is used, the SunTag system allows scientists to recruit multiple GFP copies for an amplified signal. First, a small protein tag, known as the SunTag, is fused with the protein-producing region of the nanos mRNA. As the mRNA instructions undergo translation, GFP molecules stick to the newly synthesized SunTag-Nanos protein, resulting in a bright fluorescent signal. Overlying this translation signal with fluorescent probes specifically labeling the mRNA then allows researchers to precisely visualize and track when and where the translation process is taking place.

“Using this system, we’ve discovered that when nanos mRNA is translated, it protrudes slightly from the surface of the granules like snakes peeking out of a box,” says Chen. “But they can’t fully emerge; a part of their sequence, specifically their “back” end, the 3’ UTR, remains tucked inside the granules. When the RNA is not translated, like during oogenesis, the tip coils back and is hidden inside the granule.”

With their high-resolution SunTag imaging technique, Lehmann, Chen and their colleagues have directly added to the work of other researchers with similar observations: mRNAs in the process of translation are in an extended configuration, while the 5’UTR curls back to the 3’UTR when the mRNAs are repressed.

Flipping on nanos translation

Then, the researchers went on to take a closer look at how these granules help initiate translation, while Smaug is able to inhibit the same nanos mRNA molecules from being translated in other areas of the embryo. They hypothesized that the untranslated region (UTR) of nanos mRNA, which remains concealed within the granules, might be playing a pivotal role in the translation process by localizing the mRNA instructions within germ cell granules. This localization, they speculated, protects the mRNA from Smaug’s inhibitory actions and facilitates Nanos protein production, so the posterior region can develop properly.

However, counter-intuitive to a simple protection model, they found that rather than being depleted, Smaug is enriched within germ granules, indicating that additional mechanisms within the RNP granule must counteract Smaug’s inhibitory effects. To explore this, the researchers turned to another regulatory protein called Oskar, which is known to interact with Smaug.

Discovered by Lehmann in a 1986 study, and named after a character in the German novel The Tin Drum, the oskar gene in Drosophila is known to help with the development of the posterior region. Later research has revealed that, during the development of oocytes, Oskar acts as a scaffold protein by initiating the formation of germ granules in germ cells and directing mRNA molecules, including nanos, towards the granules.

To gain a deeper understanding of Oskar’s full role in translational regulation in germ granules and its interaction with Smaug, the researchers engineered a modified version of Oskar protein. This altered Oskar protein retained its ability to initiate the formation of germ granules and localize nanos mRNA within them. However, Smaug no longer localized to the germ granules assembled by this altered Oskar.

The researchers then studied whether the mutant protein had any effect on nanos mRNA translation. In the germ cells with this mutant version of Oskar, the researchers saw a significant reduction in the translation of nanos mRNA. These findings, combined, suggested that Oskar regulates nanos translation in fruit fly embryos by recruiting Smaug to the granules and then counteracting its repression of translation.

“Condensates composed of RNAs and proteins are found in the cytoplasm of pretty much every cell and are thought to mediate mRNA storage or transport,” says Lehmann, who is also a professor of biology at the Massachusetts Institute of Technology. “But our results provide new insights into condensate biology by suggesting that condensates can be also used to specifically translate stored mRNAs.”

Indeed, in the oocyte, the germ granules are silent and only become activated when the egg is fertilized.

“This suggests that there might also be other ‘on and off switches’ governing translation within condensates during early development,” adds Lehmann. “How this is achieved and whether we could engineer this to happen at will in these and other granules is a question for the future.”

She’s fighting to stop the brain disease that killed her mother before it gets her

Jonathan Weissman is the senior author on a recent study on silencing a prion protein's expression. Prions cause devastating neurodegenerative disorders such as dementia, Huntington's, Parkinson's, and Lou Gehrig's disease. Silencing genes represents a step towards a therapeutic model for treating these diseases in humans.

Karen Weintraub | USA TODAY
June 27, 2024

CAMBRIDGE, Mass. ‒ Sonia Vallabh watched helplessly as her 51-year-old mother rapidly descended into dementia and died. It didn’t take long for Vallabh to realize she was destined for the same rare genetic fate.

Vallabh and her husband did what anyone would want to do in their situation: They decided to fight.

Armed with little more than incredible intellect and determination they set out to conquer her destiny.

A dozen years later, they’ve taken a major step in that direction, finding a way to shut off enough genetic signals to hold off the disease.

And in the process of trying to rescue Vallabh, they may save many, many others as well.

In a paper published Thursday in the prestigious journal Science, Vallabh and her husband, Eric Minikel, and their co-authors offer a way to disrupt brain diseases like the one that killed her mother.

The same approach should netbet sports betting appalso work against diseases such as Huntington’s, Parkinson’s, Lou Gehrig’s disease and even Alzheimer’s, which result from the accumulation of toxic proteins. If it works as well as they think, it could also be useful against a vast array of other diseases that can be treated by shutting off genes.

“It doesn’t have to be the brain. It could be the muscles. It could be the kidneys. It could be really anywhere in the body where we have not easily been able to do these things before,” said Dr. Kiran Musunuru, a cardiologist and geneticist at the University of Pennsylvania’s Perelman School of Medicine, who wasn’t involved in the research but wrote a perspective accompanying the paper.

So far, they’ve proven it only in mice.

“The data are good as far as they go,” Vallabh said this week from her office at the Broad Institute of Harvard and the Massachusetts Institute of Technology, where she has worked since getting a Ph.D. at Harvard. She had already gotten a law degree from the university, but she and Minikel, then a transportation planner, both pursued biology degrees after her mother’s death. Now, they work together at the Broad.

“We’re far from this being a drug,” Vallabh said. “There’s always, always reason for caution. Sadly, everything is always more likely to fail than succeed.

“But there is justifiable reason for optimism.”

A terrible disease

The disease that killed Vallabh’s mother was one of a group of conditions called prion diseases. These include mad cow disease, which affects mostly cattle, scrapie, which affects sheep, and Creutzfeldt-Jakob disease, which kills about 350 Americans a year ‒ most within months of their first symptom.

These diseases are triggered when the prion protein found in all normal brains starts misfolding for some reason, as yet unknown.

“Prion disease can strike anybody,” Vallabh said, noting the 1 in 6,000 risk to the general population.

Though prion diseases are, in some cases, contagious, a federal study earlier this year concluded that chronic wasting disease, found in deer, elk and moose, is very unlikely to pass to people who eat the meat of sick animals.

In Vallabh’s case, the cause is genetic. Vallabh discovered after her mother’s death that she carries the same variant of the same gene that caused her mother’s disease, meaning she will certainly develop it.

The only question is when.

“The age of onset is extremely unpredictable,” Vallabh said. “Your parent’s age of onset doesn’t actually predict anything.”

How the gene-editing tool works

Vallabh and Minikel approached colleagues at the Whitehead Institute a biomedical research institute next to the Broad. They asked to collaborate on a new gene-editing approach to turn off Vallabh’s disease gene. The technique developed by Whitehead scientists is called CHARM (for Coupled Histone tail Autoinhibition Release of Methyltransferase).

While previous gene-editing tools have been described as scissors or erasers, Musunuru described CHARM as volume control, allowing scientists to tune a gene up or down. It has three advantages over previous strategies, he said.

The device is tiny, so it fits easily inside the virus needed to deliver it. Other gene-editing tools, like CRISPR, are bigger, which means they need to be broken into pieces and much more of the virus is needed to deliver those pieces to the brain, risking a dangerous immune reaction.

CHARM, Musunuru said, is “easier to deliver to hard-to-deliver spaces like the brain.”

At least in the mouse, it also seems to have reached throughout the brain, making the desired genetic change without other, unwanted ones, Musunuru said.

And finally, the research team figured out a way to turn the gene editor off after its work was done. “If it’s sticking around, there’s the potential for genetic mischief,” Musunuru said.

One shot on goal

While researchers, including Vallabh, continue to work to perfect an approach, the clock for Vallabh and others is ticking.

Right now there’s no viable treatment and if it takes too long to develop one, Vallabh will miss her window. Once the disease process starts, like a runaway train, it’ll be much harder to stop than it would be to just shut the gene off in the first place.

The more prion protein in the brain, the more likely it is to misfold. And the more likely it is for the disease to spread, a process that co-opts the natural form of the protein and converts it to the toxic form.

That’s why getting rid of as much of it as possible makes sense, said Jonathan Weissman, the senior author of the study, who leads a Whitehead lab.

“The biology is really clear. The need (for a cure) is so compelling,” Weissman said.

Every cell in the brain has the gene for making the prion protein. By silencing even 50% of those genes, Weissman figures he can prevent the disease. In mice, CHARM silenced up to 80% to 90%.

“We’ve figured out what to deliver. Now we have to figure out how to deliver it,” he said.

Another of the paper’s co-authors, the Broad’s Ben Deverman, published a study late last year showing he could deliver a gene-therapy-carrying virus throughout the brain. Others are developing other viral delivery systems.

Vallabh and Minikel have hedged their bets, helping to develop a so-called antisense oligonucleotide, or ASO, which uses another path for stopping the gene from making the prion protein.

The ASO, which is in early trials in people by a company called Ionis Pharmaceuticals, requires regular treatment rather than the one-and-done of gene therapy. Recruitment for that trial had to be paused in April because the number of would-be volunteers outstripped the available slots.

Vallabh isn’t ready yet to start any treatment yet herself.

“She has one shot on goal,” Musunuru said. “At some point, she’ll have to decide what’s the best strategy.”

In the meantime, the clock Vallabh can’t see continues to tick toward the onset.

She and Minikel stay exceedingly busy with their research along with their daughter, almost 7, and 4-year-old son ‒ both born via IVF and preimplantation genetic testing to ensure they wouldn’t inherit her genetic curse. (They were super lucky, Vallabh notes, to be living in Massachusetts where IVF is at least “approachable” financially.)

“There is a mountain ahead of us,” Vallabh said of the path to a cure. “There’s still a lot of hurdles, there’s still a lot to figure out.”